Wyszukiwanie "najbardziej wartościowej" krawędzi grafu
Ostatnio zmodyfikowano 2016-01-28 10:21
OSA_PL Temat założony przez niniejszego użytkownika |
Wyszukiwanie "najbardziej wartościowej" krawędzi grafu » 2016-01-27 22:47:31 Cześć, poszukuję sposobu by w grafie nieskierowanym znaleźć krawędź, której usunięcie spowoduje maksymalne wydłużenie najkrótszej ścieżki pomiędzy dwoma wierzchołkami tego grafu. Jedyne co na szybko przychodzi mi do głowy to znalezienie najkrótszej ścieżki i następnie po kolei obliczanie ścieżek z usuniętą jedną z krawędzi najkrótszej ścieżki. Jakaś część odległości w grafie się nie zmienia, więc troche obliczeń odpada, ale zapewne jest jakaś szybsza metoda. |
|
DejaVu |
» 2016-01-28 10:21:20 Ja bym pewnie szukał minimalnego drzewa rozpinającego. https://pl.wikipedia.org/wiki/Minimalne_drzewo_rozpinaj%C4%85ceCały trick polega na tym, aby z dodatnich wartości w grafie zrobić ujemne (czyli waga = - waga; ). /edit: A jak nie chcesz mieć wartości ujemnych to wyszukujesz dodatkowo największą wartość (przed zmianą znaku) i po zmianie znaku dodajesz ją do wszystkich węzłów. Wówczas najmniejsza krawędź będzie miała wagę 0. |
|
« 1 » |